Welcome to Huma®: Humic Solutions with a Human Touch

By Jonathan Plehn
President,
Huma®, Inc.

I am extremely proud to officially unveil our company’s new branding and name. We are now Huma®– a 50-year-old legacy ready to be reintroduced to the world! It is a strategic decision to shorten our name from Bio Huma Netics® (BHN) to Huma® and we are confident that this progressive move is in our company and our customers’ best interests. [Read more…]

BHN Acquires Warehouse in Tempe

By Lyndon Smith,
President and CEO
Bio Huma Netics, Inc.

I’m excited to share that Bio Huma Netics, Inc. (BHN) has acquired an additional building in Arizona. It’s a significant milestone for us that not only testifies to the continual progress we’re making as a company but will also serve as a building block for future expansions. [Read more…]

Introducing New Humic Conversations Video Series

We are excited to introduce our new educational project, the Humic Conversations Video Series. As the name suggests, each episode of the series will focus on humic substances. Two leading researchers from our Humic Research Lab. Dr. Rich Lamar and Dr. Hiarhi Monda will share their expertise with the viewers.

In Episode 1 of this series, we discuss the basic science of humic substances. Dr. Lamar and Dr. Monda explain what humic and fulvic acids are, how they are formed, where they come from, and what their biostimulant properties are when it comes to plant and microbial growth.

The 16-minuite video is closed captioned in English and Spanish.

Research Report: Biostimulant Effect of Humic Acids on Tomato Plants Under Nutritional Stress

In a research study, originally published in Frontiers in Plant Science, May 2021, Vol. 12:660224, the biostimulant properties of humic acid (HA) were tested on Micro Tom tomato plants under increasing nutritional stress. The results confirmed the positive role humic acids play in enhancing nutrient efficiency uptake in plants.

A team of scientists from the Bio Huma Netics, Inc. (Hiarhi Monda, Ryan Fountain, and Rich Lamar) collaborated with Amy M. McKenna of the National High Magnetic Field Laboratory, Ion Cyclotron Resonance Facility, to conduct this research. The researchers believe that the increasing demands for biostimulants in the agricultural market requires the industry to provide research-based data on the efficiency and safety of this particular product category. This was the motivation that led them to initiate this extensive research. [Read more…]

Why Are Humic Substances Called Acids?

By Richard Lamar, PhD
Senior Director of Humic Research
Bio Huma Netics, Inc.

We are accustomed to seeing humic substances (humic and fulvic) in dry/granular form, and we tend to think of acids as liquids. So why are humic and fulvic substances called acids?

[Read more…]

BHN Sponsors Online Course on Sustainable Organic Agriculture Production

To help increase awareness about sustainable agriculture production, Bio Huma Netics, Inc., (BHN) is sponsoring a FarmProgress course for Certified Crop Advisers (CCAs) and Pest Control Advisers (PCAs) in the United States and Canada.

This free online continuing education course, titled “Organic/Sustainable Agriculture Production -2022” aims to help working professionals learn about sustainable farming practices and pest management without the use of synthetic chemicals.

During the training, participants will learn about most common pests in organic/sustainable agricultural systems and current methods of controlling insect pests, weeds, and diseases in a range of organic crops grown in the United States.

The two-hour duration course is divided into ten sections and allows participants to complete it at their own pace.

[Read more…]

JoVE Video Journal Publication: Quantification of Humic and Fulvic Acids

Dr. Richard T. Lamar and Dr. Hiarhi Monda of our Humic Research Laboratory, with assistance from analytical chemist Ryan Fountain, have published a methodology video in the biochemistry section of the peer-reviewed online video journal, JoVE.

The video, Quantification of Humic and Fulvic Acids in Humate Ores, DOC, Humified Materials and Humic Substance-Containing Commercial Products, shows the step-by-step laboratory methodology (the New Standard Method) for gravimetric quantification of humic substances (e.g., humic and fulvic acids) on an ash-free basis, in dry and liquid materials from soft coals (i.e., oxidized and non-oxidized lignite and sub-bituminous coal), humate ores and shales, peats, composts and commercial fertilizers and soil amendments.

In the video introduction, Dr. Lamar states, “The New Standard Method for quantification of humic acids provides a more accurate and precise analysis compared to the existing regulatorily accepted methods, and it also provides a standard method for pure hydrophobic fulvic acid quantification. The advantage of this protocol is that it provides a gravimetric analysis of humic and hydrophobic fulvic acid concentrations on an ash-free basis, and the extraction process has been optimized to obtain the highest recoveries of both humic and fulvic acids from samples.

At the video’s conclusion, Dr. Monda states, “Following this procedure, the dry humic and fulvic acids obtained can be used for characterization purposes, such as the carbon-13 and the proton NMR electron resonance, and the ultrahigh resolution mass spectrometry, among other useful techniques. This can be used for characterization of the humus chemistry, as well as being a useful tool to dig deep into the structure-activity relationship with plant fitness and the underlying plant defense mechanisms.

Direct link to video on the JoVE Website: https://www.jove.com/v/61233/quantification-humic-fulvic-acids-humate-ores-doc-humified-materials (A free subscription will be required to view the entire video on the JoVE Website.)

From the JoVE Website: Filmed at the world’s top scientific institutions, JoVE videos bring to life the intricate details of cutting-edge experiments enabling efficient learning and replication of new research methods and technologies. JoVE is a peer-reviewed scientific video journal that is indexed in PubMed and Web of Science.

Effects of Humic Substances on Soil Microbes

By Richard Lamar, PhD
Senior Director of Humic Research
Bio Huma Netics, Inc.

Most of the work on agricultural applications of humic substances (HS) has focused on their biostimulant effects on plants. Far less work has been conducted on the effects of HS on soil microbial populations. It’s not surprising to learn, from the few studies that have been published, that HS also stimulate the growth of soil bacteria, even the bacteria that inhabit earthworm digestive tracts. One of the most important discoveries is that many species of soil bacteria are able to grow on humic acid (HA) as their sole carbon source (Tikhonov et al., 2010).

These findings have important implications for the roles played by soil bacterial communities—including those residing in the guts of soil fauna, such as earthworms—in the humification process (i.e., the process of conversion of dead plant tissues to humic substances). This means that these bacteria are consuming HS and modifying HS by metabolizing humic molecules and using the metabolized molecules to produce proteins, fats, and other types of molecules. When the bacteria die, they are in turn consumed by other microbes and those molecules created from metabolized humic molecules wind up being included as HS.

The other important piece of information that has come out of the work on bacterial-HS interactions is that, in addition to being potential carbon sources, HS can also act as soil bacterial growth stimulants or growth regulators (Tiknonov et al., 2010). This was demonstrated in a study in which a number of soil isolated bacterial species were grown on a medium that contained glucose as the carbon source (10 mg/ml) and humic acid (1 mg/ml). Thus, the humic acid was 10X lower than the glucose. Growth of the bacteria on this medium was compared with the growth of bacteria on a medium that did not contain the humic acid. The growth of 41% percent of the bacterial species (these were isolated from earthworm digestive tracts) were stimulated by the inclusion of the humic acid. The authors of the study concluded that, because the concentration of glucose was so high and the increase in available carbon from the addition of 1 mg/ml humic acid was insignificant, the humic acid acted as a growth stimulant to the 41% of bacteria whose growth was increased.

These types of studies have demonstrated that HS can stimulate the growth of plant-growth-promoting rhizobacteria (aka PGPR bacteria, for which the “rhizo” stands for rhizosphere or the area of soil that is intimately associated with plant roots). One of the most well-known PGPR bacteria are Pseudomonads, strains of which have been found to be able to solubilize phosphate, produce siderophores (important for Fe uptake), ammonia, and the plant-growth-regulator auxin (Gupta, 2008; Selvakumar et al., 2009).

REFERENCES

Gupta, A. and M. Gopal. 2008. Siderophore production by plant growth promoting rhizobacteria. Indian J. Agric. Res. 42(2):153–156.

Salvakumar, G., P. Joshi, S. Nazim, P. K. Mishra, J. K. Bisht and H. S. Gupta. 2009. Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC8984), a psychrotolerant bacterium isolated from a high-altitude Himalayan rhizosphere. Biologia, 64(2)239-245

Tikhonov, V. V., A. V. Yakushev, Y. A. Zavgorodnyaya, B. A. Byzov, and V. V. Demin. 2010. Effect of humic acids on the growth of bacteria.  European Soil Science, 43 (3):305–313.

The Right Stuff for Soils and Plants

By Mojtaba Zaifnejad, PhD

When applied fertilizers benefit soil health and plant growth, and are readily available to them, it is said that they are bioavailable. The extent of bioavailability of nutrients and fertilizers applied to soil and plants determines their effectiveness in improving soil health and crop yield.

In addition to the 4Rs approach, the factors affecting this mineral nutrient bioavailability include, but are not limited to, parent material of the fertilizers; their oxidation (saddening) or reduction (making happy) state for plants; what kind of carrier they ride on (chelated or complexed); whether they are taking healthy treats (right source of carbons) to the host, its children, and workers (beneficial microbes); and whether that treat is a long-lasting one for everybody. If the coming guest (fertilizer) can help the hosts (plant and soil) to handle bad neighbors (insects, disease, weeds, etc.) and harsh circumstances (droughts, floods, wind, etc.), that is better yet. [Read more…]

Humic Acids vs. Compost

Two of the most common methods used for rapidly increasing soil organic matter and improving soil biology are to add compost or to add humic substances. There are pros and cons with each. [Read more…]

Translate »
>